eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
↳ QTRS
↳ DependencyPairsProof
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
TAKE2(s1(X), cons2(Y, L)) -> TAKE2(X, L)
LENGTH1(cons2(X, L)) -> LENGTH1(L)
INF1(X) -> INF1(s1(X))
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
TAKE2(s1(X), cons2(Y, L)) -> TAKE2(X, L)
LENGTH1(cons2(X, L)) -> LENGTH1(L)
INF1(X) -> INF1(s1(X))
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
LENGTH1(cons2(X, L)) -> LENGTH1(L)
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LENGTH1(cons2(X, L)) -> LENGTH1(L)
POL(LENGTH1(x1)) = x1
POL(cons2(x1, x2)) = 1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
TAKE2(s1(X), cons2(Y, L)) -> TAKE2(X, L)
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TAKE2(s1(X), cons2(Y, L)) -> TAKE2(X, L)
POL(TAKE2(x1, x2)) = 3·x1 + 3·x2
POL(cons2(x1, x2)) = 2·x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
INF1(X) -> INF1(s1(X))
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
POL(EQ2(x1, x2)) = 3·x1 + 3·x2
POL(s1(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
eq2(0, 0) -> true
eq2(s1(X), s1(Y)) -> eq2(X, Y)
eq2(X, Y) -> false
inf1(X) -> cons2(X, inf1(s1(X)))
take2(0, X) -> nil
take2(s1(X), cons2(Y, L)) -> cons2(Y, take2(X, L))
length1(nil) -> 0
length1(cons2(X, L)) -> s1(length1(L))